

Effect of Ti microalloying and residual S content on the hot ductility of a boron steel

Montaña, Y^{1,2}; Arruabarrena, J^{1,2}

¹ Ceit, Manuel Lardizabal 15, 20018 Donostia-San Sebastián ² Universidad de Navarra, Tecnun, Manuel Lardizabal 13, 20018 Donostia-San Sebastián

Continuous Casting process

Universidad de Navarra

¹Rosa M. Pineda Huitron, Pavel E. Ramirez Lopez, Esa Vuorinen, Robin Jentner, Maija E. Karkkainen. *Materials Science & Engineering A*, 772 (2020) 138691.

Continuous Casting process

Ladle

Tundish

Secondary

cooling

²J. K. Brimacombe and K. Sorimachi. *Metallurgical Transactions B* Volume 8B, 1977 – 489

0

Continuous Casting process

²J. K. Brimacombe and K. Sorimachi. *Metallurgical* Transactions B Volume 8B, 1977 - 489

Factors

Universidad le Navarra

- Composition \rightarrow microalloyed steels!! 0
- Microstructure (grain size and precipitation) Ο
- Process variables (thermal cycle and casting speed) Ο

Universidad

Universidad

Temperature (°C)

Experimental

Composition in wt%

	С	Si	Mn	Ρ	S	Cr	Мо	ΑΙ	Ν	Nb	V	Cu	В	Ti
BC	0.15	0.3	1.42	0.012	0.002	0.02	0.003	0.037	0.007	0.033	0.011	0.012	0.0000	0.000
BC-B	0.15	0.3	1.42	0.012	0.002	0.02	0.003	0.037	0.007	0.033	0.011	0.012	0.0025	0.000
BC-BTi150	0.15	0.3	1.42	0.012	0.002	0.02	0.003	0.037	0.007	0.033	0.011	0.012	0.0025	0.015
BC-BTi300	0.15	0.3	1.42	0.012	0.002	0.02	0.003	0.037	0.007	0.033	0.011	0.012	0.0025	0.030
BC-BTi600	0.15	0.3	1.42	0.012	0.002	0.02	0.003	0.037	0.007	0.033	0.011	0.012	0.0025	0.060

*BC (Base Composition)

Ingots processed by remelting a base composition and the addition of B and Ti.

B conditioning and expected precipitation (based on THERMODYNAMIC EQUILIBRIUM (Thermo-Calc TCFE9))

Ti/N _{stoic} = 3,417	<u>TiN</u>	<u>MnS</u>	<u>NbC</u>	BN	AlN	<u>B in ss</u> (or Fe23(C,)	<u>B)6)</u>	
	BC	×	\checkmark	✓	×	✓	×	
	BC-B	×	\checkmark	✓	\checkmark	✓	✓	
Hypo-stoichiometric Ti/N →	<u>BC-BTi150</u>	\checkmark	\checkmark	✓	\checkmark	✓	√√	
Stoichiometric Ti/N 🛛 🔶	<u>BC-BTi300</u>	\checkmark	\checkmark	✓	×	×	~ ~ ~	
Hyper-stoichiometric Ti/N	<u>BC-BTi600</u>	✓	\checkmark	✓	×	×		

Experimental

Characterization of the ductility trough

100

<u>Hot tensile tests</u>

Main conclusions:

- BC steel starts ductility loss at 950°C and it extends until 800°C. At 750°C ductility starts to recover

- B addition (25 ppm) improves hot ductility shifting the high temperature low ductility zone to lower temperatures (around 50°C)

- When B is protected by Ti, the ductility trough notably reduces and the ductility drop occurs smoothly as the temperature decreases

BC-BTi300 90 80 BC-BTi600 BC-BTi150 70 60 BC BC-B R.A (%) 50 40 30 20 10 0 700 750 800 850 900 950 1000 1050

Temperature (PC)

- The optimal result is achieved when Ti is added in the stoichiometric range. When Ti is in the hypo / hyperstoichiometric ranges ductility trough tends to increase.

Characterization of A_{r3}

Universidad

de Navarra

A₃=820°C (thermodynamic equilibrium (Thermo -Calc TCFE9))

Characterization of A_{r3}

Characterization of precipitation

BC

- Coarse precipitation: Al₂O₃, MnS, NbC (homogeneous or co-precipitated)
- Fine precipitation (100-200nm): no fine precipitates (neither NbC nor MnS)

1µm

ſlμm

Characterization of precipitation

BC – Main changes

• Fine precipitation (100-200nm): MnS, Nb(C,N)

T= 900°C

• Fine precipitation (100-200nm): higher density and aligned in AGB of MnS, Nb(C,N)

Universidad Navarra

> MEMBER OF BASQUE RESEARCH & TECHNOLOGY ALLIANCE

P

Characterization of precipitation

BC-B

- Coarse precipitation: Al₂O₃, MnS, NbC (homogeneous or co-precipitated)
- Fine precipitation (100-200nm): no fine precipitates (neither NbC nor MnS)

Characterization of precipitation

BC-B – Main changes

- Coarse precipitation: precipitation of **BN** (always co-precipitated)
- Fine precipitation (100-200nm): no fine precipitates (NbC, MnS or BN)

Universidad de Navarra

> MEMBER OF BASQUE RESEARCH

1μm

T= 900°C

Coarse precipitation: higher density of precipitation of **BN** (even homogeneously precipitated)
 Fine precipitation (100-200nm): fine precipitates of Nb(C,N) and MnS, but lower density than BC

900°C

✓

×

×

×

×

11

x

x

800°C

✓

×

x

x

×

√ √

×

×

Characterization of precipitation

BC-BTi300

- Coarse precipitation: Al₂O₃, MnS, NbC, **TiN**, (homogeneous or co-precipitated)
- Fine precipitation (100-200nm): Ti(C,N), (Ti,Nb)(C,N)

Ti Kα1

T= 1325°C

Characterization of precipitation

T= 1000°C

- Coarse precipitation: NO precipitation of BN
- Fine precipitation (100-200nm): in addition to Ti(C,N), (Ti,Nb)(C,N) → MnS precipitates

T= 800°C

 \circ Coarse precipitation: massive Fe₂₃(C,B)₆ precipitation in AGB

Characterization of precipitation

BC-BTi300 – Main changes

 Fe₂₃(C,B)₆ precipitation in AGB (lower B content in ss)

			BC-BTi300						
Elements	Precipitate	Classification	<u>1325°C</u>	<u>1000°C</u>	<u>900°C</u>	<u>800°C</u>			
AI	Al ₂ O ₃	Coarse precipitation	×	1	1	✓			
Nb, Ti		Coarse precipitation	 ✓ 	✓	✓	✓			
	ND(C,N)	Fine precipitation (100-200nm)	×	×	×	×			
		Coarse precipitation	 ✓ 	✓	✓	✓			
	11(C,N)	Fine precipitation (100-200nm)	 Image: A second s	~	1	1			
		Coarse precipitation	×	×	×	×			
	(105,11)(C,10)	Fine precipitation (100-200nm)	 Image: A second s	✓	1	1			
В	DN	Coarse precipitation	×	×	×	×			
	BIN	Fine precipitation (100-200nm)	×	×	٢	×			
	Fe ₂₃ (C,B) ₆	Coarse precipitation	×	×	×	44			
S	Mas	Coarse precipitation	 Image: A second s	✓	✓	✓			
	IVINS	Fine precipitation (100-200nm)	×	1	1	✓			

Universidad de Navarra

> MEMBER OF BASQUE RESEARCH & TECHNOLOGY ALLIANCE

• For this CR no fine BN precipitation in AGB

- B delays Nb(C,N) and MnS precipitation / B occupies vacancies preventing formation and propagation of cracks
 - Fine precipitation of Nb(C,N) and MnS

Conclusions

- BC Steel → the extension of the ductility trough in the austenite phase region is related to the precipitation of Nb(C,N), which confirms these grades show a challenging continuous casting process. The choice of bending/straightening conditions must be made carefully
- \circ BC-B steel → B addition can improve hot ductility. This improvement is most probably related to the process of segregation of B and BN precipitation, therefore, great care must be taken with the process conditions, specially with the cooling rate.
- The addition of Ti for the protection of B can greatly improve hot ductility. The optimum Ti addition is that corresponding to the stoichiometric Ti/N ratio. It has been determined:
 - B in ss increases hardenability and in consequence at this cooling rate there is no ferrite transformation
 - Ti addition removes BN precipitation/protects B in ss which improves hot ductility
 - Ductility loss at 800°C seems to be related to $Fe_{23}(C,B)_6$ precipitation at AGB

Thank you!